Deficiency of myeloperoxidase increases infarct volume and nitrotyrosine formation in mouse brain.
نویسندگان
چکیده
Peroxynitrite is responsible for nitration in vivo, whereas myeloperoxidase can also catalyze protein nitration in the presence of high NO2(-) levels. Recent reports of myeloperoxidase-mediated enzyme inactivation or lipid peroxidation have suggested a role of myeloperoxidase in various pathological conditions. To clarify the role of myeloperoxidase in ischemic brain injury, the authors measured nitrotyrosine formation and infarct volume in myeloperoxidase-deficient or wild-type mice subjected to 2-hour focal cerebral ischemia-reperfusion. Twenty-four hours after reperfusion, infarct volume was significantly larger in myeloperoxidase-deficient mice than in wild-type mice (81 +/- 20 mm(3) vs. 52 +/- 13 mm(3), P < 0.01), and nitrotyrosine levels in the infarct region were higher in myeloperoxidase-deficient mice than in wild-type mice (13.4 +/- 6.1 microg/mg vs. 9.8 +/- 4.4 microg/mg, P = 0.13). Fourteen hours after reperfusion, the nitrotyrosine level was significantly higher in myeloperoxidase-deficient mice than in wild-type mice (3.3 +/- 2.9 microg/mg vs. 1.4 +/- 0.4 microg/mg, P < 0.05). The authors conclude that the absence of myeloperoxidase increases ischemic neuronal damage in vivo, and that the myeloperoxidase-mediated pathway is not responsible for the nitration reaction in cerebral ischemia-reperfusion.
منابع مشابه
Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia.
BACKGROUND AND PURPOSE Reperfusion injury is one of the factors that unfavorably affects stroke outcome and shortens the window of opportunity for thrombolysis. Surges of nitric oxide (NO) and superoxide generation on reperfusion have been demonstrated. Concomitant generation of these radicals can lead to formation of the strong oxidant peroxynitrite during reperfusion. METHODS We have examin...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملبررسی اثر انسداد گذرای شریان مرکزی در کاهش آسیبهای مغزی در مدل سکتهی مغزی رت
Background and Objective: Recent studies suggest that sub-lethal ischemia protect the brain from subsequent ischemic injuries. This study was an effort to identify and shed light on the nature of changes in the blood brain barrier permeability and brain edema. Materials and Methods: Rats were divided into four main experimental groups, each of 21 animals. The first group acted as a model of isc...
متن کاملبررسی اثرات درمانی روغن کنجد در کاهش ضایعه و ادم مغزی در مدل آزمایشگاهی سکته مغزی در موش صحرایی
Background and purpose: Sesame oil (SO) is known to have antioxidant and anti-inflammatory properties and may produce protective effects against ischemic stroke-induced brain injuries. We examined the effects of treatment with SO on cerebral infarction and edema in a rat model of ischemic stroke. Materials and methods: Thirty male Sprague Dawley rats were divided into sham, ischemic, and isch...
متن کاملCerebral Ischemia/Reperfusion Injury in the Hyperthyroid Rat
Background: Hyperthyroidism as a risk factor for stroke is not conclusive. There are no definite data on the relationship between ischemic cerebrovascular injury and hyperthyroidism. This study was designed to define whether the outcomes of post-ischemic stroke injury are influenced by chronic hyperthyroidism. Methods: Two groups of hyperthyroid (HT) and control euthyroid rats of equal numbers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2002